







Title: Integrating
Social Media
Sentiment and
Clinical Records
for Pandemic
Mental Health
Analytics

AUTHORS:

SUJATA N PATIL, PROFESSOR KLE TECHNOLOGICAL UNIVERSITY, HUBLI, KA, INDIA

EMAIL ID: SUJATA.PATIL@KLETECH.AC.IN

LES SZTANDERA, THOMAS JEFFERSON UNIVERSITY, PA, USA

## Dr. Sujata N Patil



Dr. Sujata N. Patil is currently working as a professor in the Department of Electronics & Communication Engineering at KLE Technological University, Hubballi. She holds a Ph.D. in Artificial Intelligence-based medical image analysis from KLE Academy of Higher Education & Research, Belagavi. With over two decades of academic and research experience, she specializes in developing Al/ML models for medical imaging, including applications in IVF embryo grading, prostate cancer histology, breast cancer detection, Alzheimer's disease, and neuroimaging. She has served as a Machine Learning Engineer at Thomas Jefferson University, USA, where she worked on prostate cancer image analysis using CNNs, DNNs, and attention-based networks.

Dr. Patil has been Principal Investigator for multiple funded projects, including a Center of Excellence in AI (VGST, Govt. of Karnataka), and has contributed to NIH grant proposals. She has authored several peer-reviewed publications in high-impact journals such as Scientific Reports and Remote Sensing. Her research interests span medical image analysis, deep learning, computer vision, and healthcare innovation. A senior IEEE member, Dr. Patil has held leadership roles in IEEE Bangalore and Philadelphia Sections, receiving service excellence awards. She has also organized faculty development programs, mentored students and faculty in AI-based projects, and actively contributes to interdisciplinary healthcare research.

# A MULTI-HAZARD APPROACH

## Towards Real-Time Early Warning and Intervention Systems

**INVOLVEMENT OF LOCAL COMMUNITY** 

An effective early warning system is **much more than just technology** for detecting hazards. It is a **people-centered** process that requires:

**Strong institutions** to coordinate it.

**Knowledge** to understand the risk.

Preparedness to respond.

Reliable technology to monitor.

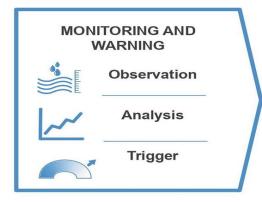
**Effective communication** to trigger action.

Inclusivity to ensure no one is left behind.

### EFFECTIVE GOVERNANCE AND INSTITUTIONAL ARRANGEMENTS









CONSIDERATION OF GENDER PERSPECTIVES
AND CULTURAL DIVERSITY

## The Problem: The Unseen Pandemic

#### The Mental Health Crisis:

- The COVID-19 pandemic led to an estimated **>25% global increase** in anxiety and depressive disorders (The Lancet, 2021).
- Psychological toll includes stress, anxiety, depression, and PTSD.

### **Limitations of Current Systems:**

- **Traditional methods** (surveys, clinical reports) are:
  - **Slow:** Delayed reporting.
  - **Limited:** Incomplete scope and coverage.
  - **Potentially Biased:** May not capture all demographics.

## State-of-the-Art in Pandemic Mental Health Analytics

Traditional Methods: Surveys, clinical reports — slow, biased, limited scope.

Early Al Attempts: Sentiment analysis of tweets (e.g., COVID-19-Twitter dataset) for population mood tracking.

Clinical Studies: EHR-based analyses (MIMIC-IV, VA data) showed post-pandemic mental health rise, but lacked real-time capability.

Hybrid Efforts: Few recent works integrate social and clinical signals, often unvalidated or small-scale.

Gap: No validated, scalable framework combining real-time public sentiment with clinical data for predictive mental health analytics.

## Limitations of Existing Approaches and Research Goals

#### Why Not Enough:

- Delay between public distress and clinical reporting.
- Data silos → lack of holistic insight.
- Insufficient interpretability and bias correction.

#### Wish List:

- Real-time, inclusive mental health surveillance.
- Integration of public (social) and clinical signals.
- Explainable, privacy-preserving Al.

Our Contribution: Develop and validate an Al-powered early warning system using transformer-based NLP on both data sources.

## A Novel Integrated Framework

#### **Fuse Two Powerful Data Streams:**

- Social Media: Real-time, large-scale barometer of public sentiment.
- Clinical Records (EHRs): Objective, validated data on healthcare utilization.

#### Leverage Advanced AI:

• Use state-of-the-art **Natural Language Processing (NLP)** to extract nuanced emotional and clinical insights from text.

**Ultimate Goal:** Create a scalable, AI-powered surveillance tool for **proactive intervention** and **optimized resource allocation**.

## Core Research Objectives

**Real-Time Sentiment Tracking:** Build NLP pipelines to analyze public emotion on social media (Twitter, Reddit, YouTube).

**Clinical Burden Analysis:** Mine EHRs to identify key mental health indicators (diagnoses, prescriptions, consultations).

**Predictive Correlation:** Model the relationship between online sentiment shifts and subsequent clinical demand.

**Actionable Dashboard:** Develop an interactive visualization tool for stakeholders with real-time insights and alerts.

### Data Sources

- **Twitter:** Panacea Lab, Chen et al. COVID-19 datasets
- **Reddit:** r/depression, r/anxiety, r/COVID19\_support
- YouTube: Comments on pandemic-related content

- **MIMIC-IV:** De-identified ICU EHRs with clinical notes
- **CDC BRFSS:** Population-level survey data on mental health
- **DAIC-WOZ:** Structured clinical interviews for depression

## A Two-Pronged AI Approach

#### Social Media Analytics (Left Pipeline):

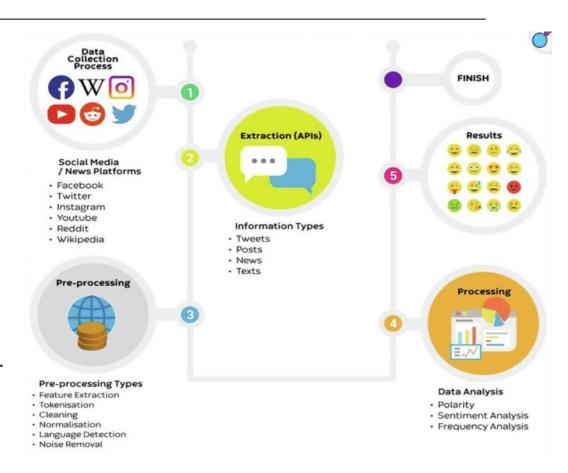
- Preprocessing: Clean text, handle emojis/slang.
- NLP Models: COVID-Twitter-BERT, other transformers.
- Tasks: Sentiment/emotion classification, trend analysis.

#### Clinical Record Mining (Right Pipeline):

- Data Extraction: Identify diagnoses (e.g., depression codes), prescriptions.
- NLP Models: ClinicalBERT, BioBERT for processing clinical notes.
- Metrics: Track trends in consultations and medication usage.

#### Integration & Modeling (Center):

 Correlate and model the outputs from both pipelines to build predictive insights.



## Integration & Prediction

#### **Correlation Analysis:**

- Statistically cross-correlate social media sentiment trends with clinical data trends.
- Identify **lead-lag relationships** (does sentiment shift *before* clinical cases rise?).

### **Predictive Modelling:**

- Employ advanced forecasting models (ARIMA, LSTM, Transformers).
- **Aim:** Predict future surges in mental health service demand based on current social sentiment.

#### Validation:

• Rigorously test if social sentiment is a statistically significant precursor to clinical demand.

## Implementation and Evaluation Plan

Phase 1: Data Integration — Collect & preprocess social (Twitter/Reddit/YouTube) and clinical (MIMIC-IV, CDC) data.

Phase 2: Model Development — Fine-tune COVID-Twitter-BERT & ClinicalBERT for sentiment/emotion and diagnosis prediction.

Phase 3: Correlation & Forecasting — Apply time-series models (ARIMA/LSTM) to link sentiment shifts with clinical upticks.

Phase 4: Validation — Metrics: correlation accuracy, forecasting RMSE, interpretability score, fairness/bias testing.

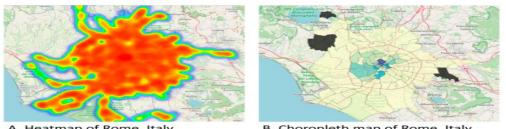
Phase 5: Dashboard Prototype — Real-time visualization and alerting for policymakers.

## Data to Decisions

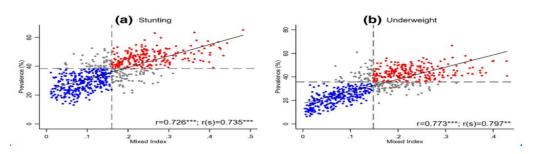
# 1. Community assessment 2. Quantifying the issue 7. Evaluating the program or policy 3. Developing a conciss statement of the issue 4. Determining what is known through the scientific literature 5. Developing and prioritizing profitiging and policy options

#### **Interactive Platform for Stakeholders:**

- **Geotagged Heatmaps:** Visualize regional stress and anxiety levels.
- Correlation Plots: Show the relationship between online sentiment and clinical metrics.
- Automated Alert System: Notify policymakers and providers of emerging risk areas.
- **Goal:** Enable evidence-informed, proactive public health strategy.



A. Heatmap of Rome, Italy B. Choropleth map of Rome, Italy





## Expected Outcomes & Impact

- A validated, end-to-end **AI pipeline** for real-time mental health surveillance.
- ✓ A functional predictive early-warning system for mental health caseloads.
- New insights into **regional and demographic disparities** in mental health impact.
- **Practical tools** for optimizing healthcare resource allocation and policy planning during future crises.

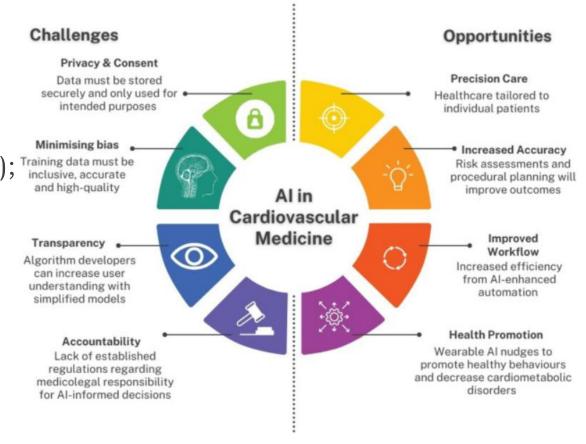
## Challenges & Ethical Considerations

**Privacy & Compliance:** Strict anonymization and adherence to data protection laws (e.g., HIPAA, GDPR) is paramount.

**Bias Mitigation:** Social media data can underrepresent vulnerable populations (elderly, rural); Training data must be inclusive, accurate and high-quality strategies needed to correct for this bias.

**Explainability:** Move beyond "black-box" AI to ensure models are interpretable and trusted by clinicians and policymakers.

**Technical Integration:** Harmonizing heterogeneous data formats (social posts vs. structured EHRs) is a key technical hurdle.



## Discussion, Limitations, and Future Work

#### Limitations:

- Social data biases (age, region, language).
- Restricted clinical dataset availability (due to privacy).
- Temporal alignment between social and clinical signals.

#### Constraints:

- Compliance with HIPAA/GDPR.
- Scalability & compute costs for NLP model training.

#### **Future Work:**

- Broader multilingual dataset inclusion.
- Integration with wearable or behavioral data.
- Collaboration with public health agencies for pilot testing.

## Conclusion and Future Work

The proposed Al-integrated mental health surveillance system bridges the gap between public discourse and clinical reality.

Demonstrated potential for predictive, proactive intervention.

Future direction: expand to other public health crises and deploy as a real-time decision-support tool.

## Impact

- 1. The psychological impact of pandemics is profound and requires **novel**, **agile monitoring solutions**.
- 2. Integrating **real-time social sentiment** with **robust clinical data** offers a powerful, complementary approach.
- 3. This AI-driven framework promises to transform mental health response from **reactive to proactive**, enabling earlier interventions and saving lives during future public health emergencies.

## Key Takeaways: Integrating Social Media & Clinical Data for Mental Health Analytics

- ➤ The Unseen Crisis Requires New Tools: The pandemic caused a massive surge (>25%) in anxiety and depression, but traditional monitoring methods (surveys, EHRs alone) are too slow and limited to track this psychological toll in real-time.
- ➤ A Novel, Integrated Solution: The study proposes a breakthrough framework that fuses real-time social media sentiment (a public "emotional barometer") with verified clinical data from electronic health records (a "clinical reality check") to get a complete picture.
- ▶ Powered by Advanced AI: The methodology leverages state-of-the-art Transformer-based NLP models (like COVID-Twitter-BERT and ClinicalBERT) specifically designed to understand the nuances of both public discourse and clinical language.

## Contd...

- ➤ Goal: Prediction, Not Just Description: The core objective is to determine if shifts in online sentiment can predict future increases in clinical demand for mental health services, functioning as an early-warning system.
- Actionable Output for Decision-Makers: The research will synthesize insights into an **interactive dashboard** with heatmaps, correlation analyses, and automated alerts, providing policymakers and healthcare providers with tools for proactive intervention and resource allocation.
- Not Without Challenges: Success depends on rigorously addressing ethical and practical hurdles, including data privacy, mitigating social media bias (e.g., against elderly populations), and ensuring the AI models are explainable and trustworthy for clinical use.